
The Sentinel Envelope - White Paper 1

WHITE PAPER

The Sentinel Envelope

Table of Contents
Executive Summary... 2

Overview ... 2

Packers – Definition and Usage .. 2

The Sentinel Envelope - One-Click, Easy-to-Use Solution .. 2

The Data File Encryption Utility .. 2

Under the Hood ... 3

Anti-Debugging and Anti-Tracing Methods ... 3

Securing the Weakest Point .. 3

Vary Behavior when Cracking Attempt is Detected ... 4

Private API .. 4

Multiple, Non-obtrusive Calls to the Sentinel Protection Key.. 4

White-Box Cryptography .. 4

AppOnChip ... 5

Original Entry Point (OEP) Protection .. 5

Method-Level Protection .. 5

Import Address Table Removal ... 5

Strong Binding of Original Code and Envelope Code ... 5

Stolen Bytes ... 5

Code and Symbol Obfuscation .. 6

National Instruments LabVIEW application (RTEXE) Protection .. 6

Conclusion .. 6

Gemalto Sentinel Software Monetization Solutions .. 6

The Sentinel Envelope - White Paper 2

Executive Summary
One of the biggest issues software publishers face in today’s
computing environment is how to prevent unauthorized use
of their software without creating unnecessary obstacles for
customers who wish to legitimately purchase and use it.

Copyright infringement of software, also known as
software piracy, is facilitated by the abundance of reverse-
engineering information found online, providing easily
available tools and knowledge to everyone. It is a well-known
fact that most countries have copyright laws that apply to
software, but the degree of enforcement and compliance
varies making some countries more “fertile” in terms of
infringement practices.

Software piracy is an ever increasing problem as it is
widespread, difficult to trace and even harder to prevent
and negate. Software piracy stunts revenue potential and
negatively impacts paying customers, who ultimately bear the
cost of illegal product use. Software vendors who proactively
protect their software are on the right track but may not be
fully protected against the ever-growing hacking attempts
that can compromise their application’s security. A common
misconception is that once a certain application is protected
and distributed it is completely “bullet-proof” against
software piracy and Intellectual Property theft. It is crucial
that software vendors work with the licensing vendor and/
or hardware protection manufacturer to constantly update
and improve the level of security. Incorporating innovative
protection and security measures, as part of the product
lifecycle, can greatly contribute to being steps ahead of
potential threats.

Software piracy is an ever increasing problem as
it is widespread, difficult to trace and even harder
to prevent and negate. Software piracy stunts
revenue potential and negatively impacts paying
customers, who ultimately bear the cost of illegal
product use.

This paper examines a variety of mechanisms available as
part of the Sentinel Envelope for protecting applications
against software piracy and Intellectual Property theft.

Overview
Packers – Definition and Usage

Packer is, as the name suggests a tool that modifies
executables and creates new equivalent files for the purpose
of compression or as a reverse engineering protection
method. Packers operate in a similar manner to the Russian
Matryoshka doll – a doll within a doll within a doll principal.
The process of packing can add one (or more) sections to the
original executable in addition to attaching a loader which
‘unpacks’ the program before resuming normal execution.
The loader is the part of the operating system responsible
for loading the application while performing real-time
tasks such as anti-debugging, tracing detection, license
management, and background checks.

Enveloping combines encryption and native code
obfuscation to provide the strongest protection
to date enabling the protection of your valuable
Intellectual Property.

The Sentinel Envelope - One-Click, Easy-to-Use Solution

The Sentinel Envelope is an automatic file packer that
provides protection against software reverse engineering
through file encryption, code obfuscation and system-
level anti-debugging. The process of packing (or wrapping)
executable files and dynamically linked libraries ensures
that algorithms, trade secrets, and professional know-how
are secured against crackers.

The Sentinel Envelope secures an application by adding a
protective shield responsible for binding the application to
either hardware or software-based protection keys.

Protecting with the Sentinel Envelope is a procedure
that takes only a few seconds, assuming that the default
protection scheme is chosen. The process is slightly
extended if additional steps and measures are taken in
order to use some or all of its available options, providing an
extremely powerful platform for software vendors who have
no access to the application’s source code. For example,
resellers and dealers that sell unprotected software can use
the basic default Envelope settings in order to protect the
products for their local markets—an easy and rapid process.

When the protected application is launched, the Sentinel
Envelope loader (part of the Envelope run-time) sends a
query to the protection key validating its existence. If a
valid Sentinel protection key exists, the Envelope loader,
in tandem with the encryption engine of the protection key,
decrypts the application file which was previously encrypted
by the developer. If the Sentinel protection key does not
exist or is invalid, the application halts and will not execute.
Additionally, if the protection key is not available the binary
will not be decrypted.

The Data File Encryption Utility

Aside from protecting the executable of an application,
encrypting the data files being accessed by the application
ensures protection of the Intellectual Property. This
places an added layer of security between the hacker and
the Intellectual Property of the software. DataHASP, the
Data File Encryption utility, in tandem with the Sentinel
Envelope, utilizes data file encryption to pre-encrypt data
files which are then encrypted or decrypted by the protected
application. Following the encryption phase, data files can
only be accessed if a suitable protection key is detected.

Original
Files

Encrypted
Files

Envelope
Protection

http://en.wikipedia.org/wiki/Copyright_infringement_of_software
https://sentinel.gemalto.com/software-monetization/sentinel-hl/
https://sentinel.gemalto.com/software-monetization/sentinel-sl/

The Sentinel Envelope - White Paper 3

Under the Hood
The Sentinel Envelope as a whole provides robust
Intellectual Property (IP) protection against reverse
engineering through the use of its highly advanced features
such as: file encryption, code obfuscation, system-level
anti-debugging, White-box Cryptography, AppOnChip and
more. The implementation of these additional features
make it extremely complex and time consuming for hackers
to breach, thus ensuring that software code is safe from
exposure while en-route to its end-user destination. Each
feature takes into account the various techniques that
hackers use when trying to infiltrate an application.

Anti-Debugging and Anti-Tracing Methods

Normally, debuggers are used by software developers to
detect bugs and trace problems during the application
development process. However, hackers trying to gain
illegal access to software use the same debuggers to detect
and trace the implanted protection code with the ultimate
goal of changing, disabling, or removing it altogether.

An extremely powerful feature of the Sentinel Envelope
is its debugger detection mechanism, which is constantly
on the prowl for active debuggers. By sending misleading
commands and false information to the debuggers, the
Envelope succeeds in distracting them from their prime job.
Moreover, the Envelope easily identifies debuggers, allowing
the ISV to decipher between friend and foe. The Sentinel
Envelope is also architected to detect whether anti-tracing
tools have been initiated and halt the protected application
from running when necessary.

Since both hackers and developer groups use the same
debugging tools, the Sentinel Envelope must have the ability
to distinguish between debugging activities of an innocent
developer and that of someone intending to do harm. This
is achieved by displaying a message that a debugger has
been detected and preventing the protected application from
loading. A developer will turn off the debugger at this stage
to enable the application to load properly and run. However, if
a debugger is activated after the application loads and runs,
clearly this is the activity of a software “pirate” attempting to
crack the software, and thus the application halts.

Securing the Weakest Point

The weakest point in an application protected with any
packing mechanism is the seam between the application
file and the added protection code. This is the point that,
once annulled, will disconnect the link to the protection key
containing the license, leaving the application completely
unprotected. Consequently, this is the point at which most
attackers will attempt to strike. Crackers will study the
protected file analyzing the protection code and how it is
linked to the attached protection key. Once they understand
the code and recognize its location, they can then operate in
one of the following manners:

> Application-Specific Crack – Break the protection link for the
specific application file.

> Generic Crack – Break the protection link for all other files
protected by the same mechanism if the exact same method
appears in all of them repeatedly.It is, therefore, essential that
the seam between the protected file and the added protection
code be ambiguous and untraceable, presenting a long and
tiresome procedure for anyone trying to understand the protection
mechanism. One of the strongest features of the Sentinel
Envelope is its ability to protect the seam and present numerous
obstacles that prevent the protection link from being broken. This
is achieved by supplying a multi-layered protection code, added
onto the application during the protection process. These layers
are pieces of code specially designed to fit one-after-the-other
like train cars. In each protection session, the Sentinel Envelope
ensures that the various layers constructing the entire code are
organized in a different sequence when added to the original
application file.

The dynamic arrangement of the layers differs in every
Envelope protection session ensuring that each protected
file is unique. There is no resemblance between protected
files, even if the original files are completely identical.
The transition from the last instruction in the Envelope
code to the first instruction in the application code differs
between protected applications. For each application, the
original code starts at a different place making the Envelope
application seam almost impossible to trace. Learning and
understanding the different layers and their layout within
the protected file implies nothing about the layout in the
same file protected in another Envelope session. To make it

Original Application File

The seam is the weakest point

Sentinel Envelope
Protected Code

Sentinel Envelope Features and Benefits

> Automatic File Wrapper - Provide robust protection
against software reverse engineering through file
encryption and native code obfuscation

> Reconnection of the Application to the Hardware - The
application is now tightly coupled with the Hardware by
means of a protection key

> Secure Communication Channel - Sentinel eliminates
man-in-the-middle attacks by providing a secure channel
for communication between the protected application and
the protection key. The Java Envelope uses this ability to
prevent a hacker from intercepting communications to
access data sent back from the protection key

> Runtime Decryption - Because Sentinel decrypts files as
they are requested at runtime rather than loading all the
.class files into the virtual machine at once, it prevents
hackers from rebuilding the entire application

> Multiple Operating System Support - Sentinel Envelope
protects your Intellectual Property against reverse engineering
and tampering on multiple platforms: Windows(x86);Linux Intel
(x86 and x86_64) for applications to run on Linux ARM (32-bit
and 64-bit); Android (for Java apps).

The Sentinel Envelope - White Paper 4

even more difficult to break, the Envelope not only arranges
the layers differently, it also selects a different number
of layers for each file it protects. Furthermore, the layers
are encrypted, each one in a different way. And, during
application runtime, each layer is responsible for decrypting
the next layer in the sequence using a rando
encryption key.

By allowing ISVs to encrypt certain pieces of
an application or the entire application file, the
Sentinel Envelope provides a multitude of security
feature configurations based around individual
needs.

Confused? There’s more! The code in each layer is
obfuscated, by using dummy op-codes, which are inserted
between valid code instructions. This severely obstructs
the ability to investigate the code and ensures that using
disassemblers to analyze the protection mechanism or the
disassembled code becomes a futile task.

By wrapping the source code, the Sentinel Envelope
provides robust protection against reverse engineering
protecting valuable algorithms and trade secrets. Each file
protected with the Envelope is encrypted using a different
random seed, resulting in very different files following the
protection phase, even if the originals were identical. The
application file is divided into multiple blocks, which are
scalable and can be predetermined by the developers during
the protection phase. Each block is encrypted using AES
encryption using different arbitrary seeds.

Vary Behavior when Cracking Attempt is Detected

Another technique used by the Sentinel Envelope to
fight debuggers is referred to as “behavior alteration”.
The protection keys containing the license employ a
sophisticated code design that takes advantage of the
fact that the operating system and the debugger execute
applications differently. When a cracking attempt is detected
(for example, through using an integrity check), the reactive
behavior of the software is delayed, thus breaking the
logical connection between “cause” and “effect.” Delayed
reaction confuses the cracker by obscuring the true logical
link between the cracking attempt and the negative reaction
of the software to that specific attempt. Behavior such as
impairing program functionality when a cracking attempt is
detected can be very effective.

Private API

Most software protection vendors provide the same API
library to all customers; making the library a single point
of failure if a security breach occurs. Gemalto employs a
far more secure solution – ISV-specific API libraries. These
Private APIs are built and customized on Gemalto servers,
away from the prying hands of crackers. These Private
APIs make sure each vendor gets a structurally different
component to be integrated into their application. As part
of this process, the Private API’s which are customized
differently for every ISV, are augmented with unique
white-box cryptography secrets and finally go through
heavy obfuscation and protection techniques. The resulting
libraries are virtually immune to generic cracks and ensure
that, as a rule, crackers cannot make progress breaching
the security of one vendor API library and expect to make
any gains against other vendors. Sentinel Envelope fetches
these Private APIs from a copy of downloaded APIs on the
developer’s machine and injects them into the application at
protection time. These strongly protected ISV-specific APIs
are then used by the Envelope Runtime for legitimate access
to ISVs protected application.

Multiple, Non-obtrusive Calls to the Sentinel
Protection Key

The beauty of Sentinel Envelope is that it is applied to a
compiled file which ensures there is absolutely no need
to modify the source code of the application. Calls to the
protection key are executed periodically by the protection
code that gets added to the application file (the Envelope
run-time). The Sentinel Envelope allows the security
integrator of an ISV to specify and configure the time
intervals in which the Sentinel protection keys are checked,
challenging their presence using cryptographic means.
This is just one of the many parameters that are fully
configurable by the ISV to be used during protection phase.

White-Box Cryptography

Gemalto is the industry pioneer in utilizing white-box
cryptography to fully encrypt the communication channel
as a means of preventing attackers from understanding
the communication between the protected application and
the protection key. The white-box-based secure channel
communication utilizes vendor-specific components
ensuring that the secure channel encryption key cannot be
extracted from the protected binaries—both dynamically
and statically.

Original Application File

Sentinel Envelope
Protected Code

Ciphertext

mod φ(n)

λ= lcm

φ(n)Plaintext

White Box

The Sentinel Envelope - White Paper 5

AppOnChip

One of our most secure features of Sentinel Envelope,
AppOnChip, facilitates an inseparable binding of the
Sentinel hardware key to the application, providing software
publishers with the most secure software protection
solution available. This fully automated process presents
software vendors with a list of functions from their
application that contains code blocks that are compatible
with the AppOnChip feature. The protected code blocks,
encrypted and signed, can then be loaded and executed
on the hardware key itself. This additional security
measure makes it the most secure software licensing
implementation in the market. Moreover, this AppOnChip
feature can be used to protect both 32-bit and 64-bit native
binaries (EXE and DLL files). Features and Benefits of
AppOnChip include Stronger Security, Easy Implementation,
Maximum Licensing Flexibility, End User Transparency, and
No Operational Burden.

Original Entry Point (OEP) Protection

Original Entry Point (OEP) refers to the startup address of
any application from which the Operating System (OS) starts
to run the application. In order for crackers to unpack the
protected application they must locate this address, remove
the packer code and attempt to start the application from
the Original Application Entry Point.

Sentinel Envelope provides
out-of-the-box top-notch security without
spending the time and effort to develop a solution
from scratch while allowing your engineering
teams to focus on their core competencies.

Unlike other packers, the Sentinel Envelope removes the
Original Entry Point instructions from its default location
and scatters pieces inside the Envelope run-time code.
A cracker attempting to find and reconstruct the Original
Entry Point from the spread out chunks will hit a brick wall
as this is virtually impossible considering the randomness of
the location and chunk sizes.

Method-Level Protection

The Sentinel Envelope enhances the protection of .NET and
Java executable by defining Method-level protection. When
a .NET or Java assembly is selected for protection, Sentinel
Envelope automatically determines the methods that are
available for individual protection. This further ensures
security to the Intellectual Property and provides the best
protection for any application.

Import Address Table Removal

An additional means of circumventing cracking attempts is
the process of removing the Import Address Table which
contains addresses to functions in external DLLs that are
used by the protected application. The process of packing
the original application removes the Import Address Table
so that it doesn’t exist on disk or in memory and scatters this
information inside the Envelope code. This means that each
import address operation is protected and handled internally
by the Envelope. In addition, each import operation resolves
to a different memory location with a different obfuscated
code so that the cracker has to analyze and understand each
import operation separately in order to get a piece of the
puzzle. In classic protection packers, the Import Address
Table allows crackers to distinguish when they are done
analyzing each entry in the table. In the case of the Sentinel
Envelope, the Import Address Table is not used and the
cracker has no table to enumerate through – therefore they
will always have uncertainty as to whether they were able to
complete the task or not. To top it all, the Sentinel Envelope
uses various techniques to hide import, which will make
the cracked application, fail at a later stage, rendering a
“successfully cracked” application totally unusable in the
long run.

Strong Binding of Original Code and Envelope Code

In most common packers, there is no binding between the
original application code and the packer’s code. The Sentinel
Envelope tightens the virtual bond between the packer and
the protected application; Sentinel Envelope integrates itself
into the application flow based on a code flow analysis done
during protection time. This allows an indistinguishable
integration of protection measures into the application
preventing its removal by the attacker. At run-time once
the control flow reaches these designated addresses, an
explicit execution sequence performs various validation and
verification operations while continuing with the original
application’s code. If the flow is intact, the application will
run; otherwise, if the application’s integrity is in question –
the process halts.

Stolen Bytes

Memory snapshots and dumping are commonly used
techniques, which in some circumstances, are able to
provide crackers with insight on the original application
source code. This is a crucial first step for any hacker
attempting to crack the protected application and exactly
where a successful anti-hacking solution needs to excel.

4 Application uses
results as part of
its normal flow

X

1 Application executes
normally until it
reaches an AppOnChip
protected function

2 AppOnChip dynamically
loads the protected code
and then executes it
securely on the key

X

#X*?%^@$

?

3 AppOnChip returns
results from executed
code back to the
application

X

######## #X*?%^@$

Sentinel
AppOnChip

The Sentinel Envelope - White Paper 6

Contact Us: For all office locations and contact information, please visit www.gemalto.com/software-monetization

Follow Us: www.licensinglive.com

GEMALTO.COM ©
G

em
al

to
 2

01
7.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

 G
em

al
to

, t
he

 G
em

al
to

 lo
go

, a
re

 tr
ad

em
ar

ks
 a

nd
 s

er
vi

ce
 m

ar
ks

 o
f G

em
al

to
 a

nd
 a

re
 r

eg
is

te
re

d
in

 c
er

ta
in

 c
ou

nt
ri

es
. W

P
(E

N
)-

Ju
ly

.1
7.

20
17

 -
 D

es
ig

n:
 F

R

Join the Conversation

> Facebook
www.facebook.com/licensinglive

> LinkedIn
bit.ly/LinkedInLicensingLive

> Twitter
twitter.com/LicensingLive

> Google+
plus.google.com/u/2/106533196287944993975/posts

> Sentinel Video Cloud
sentinelvideos.safenet-inc.com/

> Blog
http://www.licensinglive.com/

> Sentinel Customer Community
sentinelcustomer.gemalto.com

The concept of “stolen bytes” refers to strengthening the
dependency between the protected application and the
Envelope code. The act of stealing bytes refers to selecting
chunks of random bytes from different locations of the
original source code and scattering them randomly inside
the Envelope code. These chunks of code (stolen bytes)
execute in new random locations while executing the
protected application’s original code. This mechanism
enhances the dependency of the original application code to
the Envelope code by blurring where the original application
code ends and the Envelope code starts.

Code and Symbol Obfuscation

Obfuscation is the process of turning meaningful strings
into random strings of letters or numbers. Using Sentinel
Envelope, an ISV can apply obfuscation as an anti-reverse
engineering security measure. By default, all symbol names
in the protected .NET assembly are obfuscated as part of the
protection process. In addition, ISV can choose to obfuscate
the entire code of a selected method. Since code obfuscation
may slow the performance of an application, it is not
selected by default. An ISV can apply Code obfuscation to a
method regardless of whether it is selected for protection in
the list of Methods to be protected.

National Instruments LabVIEW application
(RTEXE) Protection

A version of Sentinel Envelope is also available which
protects the National Instruments LabVIEW application
(RTEXE) running on cRIO-9030 or cRIO-9067 devices.
These embedded devices run the National Instruments
Linux real-time operating system. Supported devices for
end user include cRIO-903x with LabVIEW 2014; cRIO-903x
with LabVIEW 2015; cRIO-906x with LabVIEW 2014; cRIO-
906x with LabVIEW 2015. Supported platforms for vendors
(Sentinel Envelope for NI RTEXE) include Windows 7 32/64
bit and Windows 10 32/64 bit.

Conclusion
By allowing ISVs to encrypt certain pieces of an application
or the entire application file, the Sentinel Envelope provides
a multitude of security feature configurations based around
individual needs. Security comes at a certain cost and, as
a direct result, cannot be air tight. It is therefore crucial
that one properly evaluates the required security level as
dictated by the application itself i.e. the value of what needs
to be protected in conjunction with the incurred losses
assumed by neglecting potential risks.

By actively preventing the competition from apprehending
trade secrets and know-how an ISV can truly prevent
industrial espionage and enhance competitive advantage.
Enveloping combines encryption and native code
obfuscation to provide the strongest protection to date
enabling the protection of your valuable Intellectual

Property. Furthermore, the Sentinel Envelope provides out-
of-the-box top-notch security without spending the time and
effort to develop a solution from scratch while allowing your
engineering teams to focus on their core competencies.

Gemalto Sentinel Software Monetization Solutions
Gemalto, through its acquisition of SafeNet, is the market
leading provider of software licensing and entitlement
management solutions for on-premises, embedded and
cloud-based software vendors. Gemalto’s Sentinel is the most
trusted brand in the software industry for secure, flexible,
and future-proof software monetization solutions.

Easy to integrate and use, innovative, and feature focused, the
company’s family of Sentinel Software Monetization Solutions
are designed to meet the unique license enablement,
enforcement, and management requirements of any
organization, regardless of size, technical requirements, or
organizational structure. Only with Gemalto are clients able to
address each and every aspect of the software monetization
lifecycle—from copy and intellectual propertyprotection
to product catalog management and ongoing enduser
experience improvement.

With a proven history of adapting to new requirements and
introducing new technologies to address evolving market
conditions, Gemalto's customers around the globe know that
by choosing Sentinel, they choose the freedom to evolve how
they do business today, tomorrow, and beyond.

Download a FREE Sentinel LDK Demo Kit which includes
Sentinel Envelope, Sentinel EMS and Sentinel HL Keys. To
explore the features of Sentinel Envelope now, visit:

www5.gemalto.com/sentinel-ldk-trial-en

http://www.gemalto.com/software-monetization
http://www.licensinglive.com
http://www.gemalto.com
http://www.facebook.com/licensinglive
bit.ly/LinkedInLicensingLive
https://twitter.com/licensinglive
http://plus.google.com/u/2/106533196287944993975/posts
http://sentinelvideos.safenet-inc.com/
http://www.licensinglive.com/
http://sentinelcustomer.safenet-inc.com
http://www5.gemalto.com/sentinel-ldk-trial-en

